Graph Transformations Which Preserve the Multiplicity of an Eigenvalue
نویسندگان
چکیده
Graph transformations which preserve the multiplicity of the eigenvalue zero in the spectrum are known since 1970s and are of importance in chemical applications. We now show that analogous transformations hold for all graph eigenvalues that are of the form 2 cos rn, where Y is a rational number, 0 < r < 1.
منابع مشابه
The Main Eigenvalues of the Undirected Power Graph of a Group
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
متن کاملOn the maximum multiplicity of an eigenvalue in a matrix whose graph contains exactly one cycle
We consider the general problem of determining the maximum possible multiplicity of an eigenvalue in a Hermitian matrix whose graph contains exactly one cycle. For some cases we express that maximum multiplicity in terms of certain parameters associated with the graph. © 2006 Elsevier Inc. All rights reserved. AMS classification: 15A18; 05C38; 05C50
متن کاملOn Eigenvalue Multiplicity and the Girth of a Graph
Suppose that G is a connected graph of order n and girth g < n. Let k be the multiplicity of an eigenvalue μ of G. Sharp upper bounds for k are n − g + 2 when μ ∈ {−1, 0}, and n− g otherwise. The graphs attaining these bounds are described.
متن کاملOn certain semigroups of transformations that preserve double direction equivalence
Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).
متن کاملEigenvalue Multiplicity in Cubic Graphs
Let G be a connected cubic graph of order n with μ as an eigenvalue of multiplicity k. We show that (i) if μ 6∈ {−1, 0} then k ≤ 12n, with equality if and only if μ = 1 and G is the Petersen graph; (ii) If μ = −1 then k ≤ 12n + 1, with equality if and only if G = K4; (iii) If μ = 0 then k ≤ 12n+ 1, with equality if and only if G = 2K3. AMS Classification: 05C50
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 67 شماره
صفحات -
تاریخ انتشار 1996